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The cross sectionsfor neutrons scattering from Hzand Dohave been calculated taking intoaccount the spin
correlations, rotations, and vibrations of the molecules exactly, to the extent that the vibrations are har-
monic and do not interact with the rotations. Free translations of the molecules are assumed, but this as-
sumption is expected to be valid in the liquid, as well as the gas, for neutron energies above 0.007 eV, the
Debye temperature for hydrogen. Numerical results are given for the total cross section for both ortho-
hydrogen and parahydrogen gas at 20.4°K which agree reasonably well with the limited experimental results
available. Also, curves of the double differential cross section are shown for selected incident neutron energies
and scattering angles. These latter curves show very clearly the various rotational and vibrational tran-
sitions. The formulas given here are applicable at all temperatures below the thermal excitation of the first
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vibrational level.

I. INTRODUCTION

HE technique of slow neutron scattering has
proved most valuable as a probe for studying
molecular systems,! and much work has been devoted
to the development of calculational methods and models
which will adequately describe the scattering from such
systems. The H, molecule is not only perhaps the
simplest of all but, as a liquid, hydrogen is important
both as a cold neutron source and, in special cases, as
a shield. However, up to the present, the only calcu-
lations that have been performed??® are applicable to
high temperatures (Z400°K) with high incident neu-
tron energies (>0.06 eV), and to low temperatures
(£30°K) with low neutron energies (<0.09 eV).%58
One other detailed calculation by Brimberg® which has
a wider range of validity is not applicable to differential
cross sections, since a thermal average is taken only in
the total cross section.

The purpose of this present paper is to derive the
cross section for neutrons scattering from hydrogen gas
in the energy range from 0 eV to roughly 3 eV, and for
temperatures <3000°K (the vibrational levels are
assumed unpopulated). The results are applicable to
liquid hydrogen, with the restriction that for incident
neutron energies less than that of the Debye tempera-
ture (0.007 eV) the results are not expected to be
accurate. Spin correlations, rotations, and vibrations
are taken into account exactly, to the extent that
vibration-rotation coupling can be neglected, and that
the vibrations are harmonic. Some numerical results
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are given, and these are compared with available
experimental data. It is hoped that when more detailed
experimental information is obtained, the calculation
given here will prove useful in evaluating the assump-
tions that enter into the theory for more complicated
molecules.

Since the only significant calculational difference
between D, and H, is the effect of spin correlations,
these have been evaluated, and thus we have derived
the cross section for D, in addition to that for Ho.

II. GENERAL FORMULATION

In units where #=1, the differential cross section for
the scattering of neutrons from any molecular system
with initial wave function ¢; and final wave function
Yy is!

dc 1k

=____Z/ dte+iet[e—i(Ei—Ef)t
dQde 2mky 7 J_y

X (W12 exp(ix-Xm)am |¥s) |2 ]r. (1)

Here ko, %k are initial and final neutron momenta, re-
spectively, E;, E; are the initial and final neutron
energies, € the neutron energy transfer, x the neutron
momentum transfer, X, and a» the position vector and
scattering amplitude of the mth atom, respectively,
and the subscript T implies that a thermal average is
to be taken over the initial states.

The H; molecule is dumbbell-shaped with a sepa-
ration @. The molecule can then vibrate along the line
joining the atoms, and rotate about the center point
of that line. We write then for the position vector of a
hydrogen atom:

Xn=1I+ ('—)"Rz/z ,

where 1; is the position coordinate of the molecular
center-of-mass, and R; the relative coordinate of the
two atoms of the /th molecule. Using this separation,

n=1, 2,
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Eq. (1) becomes

d% 1k ®
_—.-—:———-—-—Z

dif ¥t BB
dQde 2w ko 5 J_o

X 2 22 Wilajp exp[ —ix-1;—i(=)7R; x/2] [¢))

l#j,n, p=1
(sl expliveri4i(—)"Roex/2] i) ]r
1k e
TS

2T ko S J

dt[e-l-i(e-“EH-E/) ¢

XY 3 ilauy expl—iwer—i(=) - Ry/2] 1)

“(Wrlan explix-rti(=)"-Ri/2] 1Y) Ir.  (2)

First we consider the second term which refers to a
single H, molecule, and which we refer to as the “self”
term. If we make the good assumption that the trans-
lational modes can be separated, then we can write for
the “self” term

do, 1k ° .
=——22 | dtX @ulexp[—ix-r;(0)]
dQde l

271' k() ’ —00
Xexp[ix-1;(£) ] [¥ie)r
X[y 21 arn exp[ (=) "ix-Ri/2] ) |2
Xexp[+i(e—E/+E/)t]]r, (3)

where ¥, is the initial wave function of the translational
modes, and £/, E/ are the energies of the rotational
and vibrational states only. It is well to point out here
that due to the vibrations R is not constant.

II.1 Spin Correlations

The nuclei of the H, molecule can form states of total
spin S=0 or S=1, the former corresponding to para-
hydrogen and the latter to orthohydrogen. For S=0
only states of total angular momentum J having even
values can occur, and for S=1 only odd values of J are
allowed. In this section we compute the effects in Eq.
(3) that are due to the nuclear spins. Call

(0T 101 Z ar ol (=) in-R/ 2]
Xexp[—i(E/—E/)t]]r. (4
We can write g(f) explicitly in the form
RUTD LRI
7,8 2T 4+1285+1  ooor=2t
XX et 30 2 2 |88, 0, n

n=0 J2Jz' 87 8282

X|4|JJ., 8Ss, 02, n=0)]2, (5)
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which includes a thermal average over the initial states,
where the parameters are defined as follows: J, J’ are
initial and final angular momenta of the molecule
(J,and J,/ are their z components); S, S’ are initial and
final total spin of the molecule (S, and S, are their z
components) ; ., o’ are initial and final z components of
the neutron spin; Ey is rotational energy of the state J ;
P,g is statistical weight of the state J with spin .S; w is
quantum of vibrational energy; » is vibrational quan-
tum number;

A=a; exp(ix-R/2)+a; exp(—ix-R/2).

Thus, g(¢) refers to the rotational, vibrational, and
spin-dependent parts of Eq. (3). The molecular Hamil-
tonian has been taken to be spin-independent and as
stated previously the coupling between rotations and
vibrations is neglected. Thus |J,S,n)=|J)|S)|#n).

Since w=10.546 €V, for hydrogen, all the molecules
are initially in their vibrational ground state, #=0, the
higher states being frozen out except at very high tem-
perature (23000°K). The rotational energy levels are
given by

BRI T+

4Ma?

where M is the proton mass, and @ the equilibrium
separation distance of the H-H bond. Now let us rewrite
the operator A. We recall that the scattering length
operator of the proton has the form

I,+1+21, -0 I.—21,-0
= a
21,,+1 2I,+1

where I, is the spin of the proton and e, and ¢_ are the
triplet and singlet scattering lengths, respectively, of
the neutron-proton interaction. Since /=% and
L+I,=S, we find
A/2=acon cos(x:R/2)+ (2/V3)ai cos(x-R/2)e-S
+isin(x-R/2)o- I,—12)], (8)
with the usual definitions of coherent and incoherent
scattering length:

@eor?= (a)?= [1/@r+ DI+ ay+-Ta
=1s3ay+a)?, 9)

and={(a")—(a)=[I(I+1)/(2I+1)*](a1—a-)*

= % (a+—'a—>2 ’

0.015

ev, (6)

J

()

(10)

respectively. First we shall consider transitions between
states of the same parity (and hence with the same
molecular spin .S). In this case only the symmetric part
of 4 contributes to the matrix elements and calling «
and B the initial and final states we have

(814 |ass 2= | (J'T /| cos(x-R/2)| T T n=0)
X[(0./S"S, | P|o.SS.)[2, (11)
where
P=2a.n+ (4/V3)ainco-S.
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Now we may sum over the final spin states with the
result

T 16l
=|(J'J./n|cos(x-R/2)|TJ .n=0)|2

X (0.5S:| P*|0.SS.).  (12)
The square of the Hermitian operator P is
P2=PtP=4a.1+ (16/3)a (e S)?
+ (16/\/3)acohainco'- S. (13)

Summing over the neutron spin states the last term
averages to zero. Since

Z(vzl(c ‘L) (e-L)|os)=3L-1, (14)
or
2 (o:| (0-5)*|0,) =38
we get "
Y (0.5S:| P2|0.5S.)=8[deon2+3a1n2S (S+1)]. (15)

Substituting now Egs. (12) and (15) into (5) and sum-
ming over S we obtain for spin-conserving transitions

Pss Gind
gs=s (=42 [acoh2+"-—‘S(S+1)]
7 2J4+1 3

X exp[:z (EJI ——-EJ)t] Z ginvt

n=0

X |(]’Jz’nlcos(x-R/Z)IJJzn=0)l2,

Jod

(16)

where the sum >/ is over states of same parity as J.
For transitions between states of opposite parity (and
hence of different spin S) only the antisymmetric part
of the operator 4 gives a nonvanishing contribution to
the matrix elements. In this case

|(8| 4 |@)|2spe5= | (J' T .m|sin(x-R/2) | JT n=0) |
X [(0./5'S.'| Q] 0.85.)|2,
0= (4/V3)aico- (Ii—1). (18)

Again, summing over final spin states and considering
that

> {os|[o Ii—I) Plo)=2(T,—1)?

Y
with

=II2+122—7}S2 ) (19)
one finds
Pss S(S+1)
g8=3" (t) =4 Z aincz[l— ]
J 2J+1 3
XZ/’ ei(E'J'—EJ)t Z einwt
J! n=0
X Y |('T/n|sin(x-R/2) | TTn=0)|2, (20)

J2J 5
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where the sum 3" is over states of opposite parity to
J. These same results can be obtained for D, and are
given in Appendix A.

II.2 Vibrations

Since all the molecules are initially in their ground
vibrational state, the vibrational transitions are im-
portant only if the incident neutron energy is great
enough so that ¥/8Mw>1. The neutron then cannot
gain energy from the vibrational modes.

The vibrational matrix elements can be evaluated
exactly under the assumption that the restoring force
of the H-H bond is harmonic in nature. We write
R=a+=x where x is the amount the bond length is
stretched. On expanding «,

w=i(Mew)Vb—b'],

where b, b are the boson creation and annihilation
operators, respectively; the matrix elements in Egs.
(16) and (20) are of the form

(n] eiinyl2]0>= giranl2
X (] exp[F (/2 (Mw)'2) (611 0),

where u=cosf, and 6 is the angle between x and R.
Using the relation

edeB= eA+B+1/2[A,B] -

the above expression becomes

(%‘ e:]:iKR/.L/2 I O>

(=)o)

=exp| i— | exp| ——

P 2 P 8Mw
kubt kub

X<n exp(f: )exp(T >0>
2(Mw)'? 2(Mw)\?

Kik L | o K2u?
= <_L ) exp(:b——-) exp(—- ) .
2(Mw)2/ ()12 2 SMw

One readily observes then that in Eq. (16)
[{J'J./n|cos(x-R/2)| J T n=0)|2

k2 \" 1

() (-2
M/ n! SMw
zxau/2+ ( )ne—uayﬂ
«( )

2

<J’J " exp( )

SMw
]]z>

since J” and J have the same parity. A similar expres-
sion holds if J’ and J have opposite parity, so that

™

()
- \4Mw/ n!

2

, (@1

x einaulz
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Egs. (16) and (20) become

D

d Qing JS
g(t) 8=8"= 4<acoh2+—‘s (S+ 1)) Z
3 7 2J+1

K \" 1
XZI ei(EJ'——EJ)t Z einwt( ) .
JI

n AMw/ n!
2
X 2 <J,Jz/ u” exp(——
JzJz' SM&)
ram 2
+ ) 1y @)
2
S(S+1) Prs
g(¢)s¢s'=4dinc2<1— )
3 7 2J+1
XZ” exp[i(EJ,—EJ)z:] Z einwt
7 =
()2 5k
X — < o
AMwl n! gea2
Ku?  dkap 2
XEXP(— + ) JJ,> ., (23)
EMw 2

Egs. (22) and (23) are expected to be valid for # up
to a value of 5, for above this value the H-H bond must
begin to show its nonlinear character, and the harmonic
approximation should fail.

II.3 Rotations

Since E;=(0.015/2)J(J+1), at liquid-hydrogen
temperature, £7<<0.015 and all the molecules are in
their lowest rotational state, which is /=0 for para-
hydrogen and J=1 for orthohydrogen. At higher tem-
peratures, however, we must know the transition proba-
bility between two arbitrary rotational states.

The wave functions for the rotational states of the
linear H, molecule (if we assume no rotational-vibra-
tion coupling, and that there is no hindrance to the
rotation) are just the spherical harmonics

[JT:)=Y1r:(0,).

We choose a coordinate system with x along the z axis.
The rotational matrix elements then are of the form

Ku?  Kkau
<J’J5’ u" exp(— +i—~) JJ2>
SMw 2
Ku?  kap
= /dﬂp" exp( ————|—i~—) Vg™ (6,6)
SMw 2

XYV55,000). (24)
If now we make use of the coupling theorem?” for the

7 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1957).
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spherical harmonics, namely,
urle [ (2L41) 204 1)712
I=t1—le| [ 4w (21+1) :l
X C (Idal ; mama)C (Indal 5 00) Y 1, mypme (6,0) 5

where the C(lidol; mim,) are the Clebsch-Gordan co-
efficients which vanish (for m;=ms=0) unless I;+7l,+1
is even, and notice that J,” must equal J, Eq. (24) can

be written as
Ku?  kap
<]’Jz’ u” exp(— +i—> J'Jz>

Yllml(07¢) Vigmg (9;45) =

SMw 2
s (=) e [(2-]/+ 1)@+ 1)]”2
Itk 1=|J'—J]| 47 (214-1)

XCUT'T; To—T.)CTT'L; 00)

K kau
'/dﬂﬂn eXP(" +/L7> Yl,Jz—J’z,(97¢> .
2

8Mw
P [ m
3 <]/]z/ ur exp(— —I—i—~)lffz>
J' Tz SM(.O 2 |

_ @J'+1)(27+1) JiJ

4 I=|J"—J

Thus,

2

| A,|2C2(JT71500), (25)
|

where we have used the closure relation for the Clebsch-
Gordan coefficients:

S CUTY; T—T)CUT To—T ) =81
Jz

The A4 ,; are defined by

L Ku?  ixau
Anl:/ dﬂ/‘n eXp(—" + )Pl(ﬂ) )
1 8M 2

(&)

and P;(u) is the Legendre polynomial of order /.
Using Eq. (25), Egs. (22) and (23) become

8() 5o =L’ +(@ne/ S (ST Pas
XZ,I expD (EJI —E,r)lf] (Zjl-l— 1)

J'+J

) K \" 1
. Z ez’nwt( ) P Z lAan
n=0 AMw/ n!i=1g—J|

) XC2(JJ'1;00), (26)
S(S+1)
g(i)s¢s'=ainc2(1— )Z Pys
3 T
X2 " expli(Esr—En)E] (2T +1)
JI
K \"1 J47
Z einwt( ) _ Z IAM‘Z
n=0 AMw/ nli=1a—J)
XC2(JJ'l;00). (27)
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The coefficients C2(JJ'l;00) are given in Appendix B
for =0, 1, 2, 3, 4.

II.4 Translations

For hydrogen we assume that the molecular trans-
lations are free. Using familiar results, the translational
part of Eq. (3) becomes

(ie| exp[—dxc1,(0)] explix-1:(8) ][ Yirst
=exp[ — (&*/4M)(—i+T)], (28)
where the temperature 7" is measured in electron volts.

This approximation is likely to be an excellent one
for gaseous hydrogen.

III. SCATTERING CROSS SECTIONS
By using Egs. (26), (27), and (28) in Eq. (3), and
performing the indicated integration over ¢, the “self”

scattering cross section per molecule from parahydrogen
becomes

do, k( M )WZ 1( K2 )" 5
=— — P
dQdel yara ko \mi2T n pI\dMw/ J=02,4,-- 7
X[a2 X e X (2J'+1)
J'=0,2,4,+- J’=1,8,5,++-

ol (e 2/ 2)
x ¥ C2(JJ'1;00) | A2, (29)

I=|J'—=J|

where AE= E;— Ej+nw, and for orthohydrogen

d%s, By MA\V2 17 g2 \" i
=‘“‘< ) Z“( ) >  Ps
ortho ko \mwK2T n n\\dMw/ JI=1,35,--

dQde
2 +@al+2a%) XX ]

J'=0,2,4,+++ J'=1,3,5,%¢+

X (27" 41) exp{ —(6+AE+;%>2/ (%)}

T4 T
X Y CJT1;00)| A2, (30)

1=|J'—J|

X[a?

where for compactness in writing we treat the sum-
mation sign as an operator. Egs. (29) and (30) have
special cases of interest. If the initial neutron energy
is sufficiently less than 0.546 eV so that we satisfy the
condition «?/8Mw<<1 for all scattering angles, then the
vibrations need not be considered, and

1 ) ka
Aoz=f dﬂez“““’zl’z(u)=2il]'z(;) )
-1

where 7; is the spherical Bessel function of order .
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Thus, in this limit, Eqgs. (29) and (30) become

d%o ks M \'V2
) 5
dQde| para  ko\TK2T J=0,2,4, "+
X[e? ¥ H4ed X JQ2J+1)
J'=0,2,4,+ J'=1,3,5,¢¢
k2 \? «*T
Xexp{—(e-{—AE-i———) /<—~)l
aM M .
J'+J KaQ
> jﬂ(—)c%n/z;om, (31)
1=|J'—J| 2
d%, 4 kf M\
SRR
dQdel orine 3 ko \mk2T J=1,3,5,+++
X[e? X +Q@al+2e%) X ]
J'=0,2,4,4+ J!'=1,3,5,¢°"
k% \? «*T
X (27'+1) exp{—(e—}-AE‘l“——) /("—)]
aM M
J+J! K@ :
X X jz2(—)C2(JJ’l;OO). (32)
I=|J—J"| 2

Another special case is that of low temperature, where
the molecules are in their ground rotational as well as
vibrational states. Here we find

() )
dﬂde para_ kO 7"K2T ”Ln! 4Mw

fe2 ¥ 4e2 X J@I+D
J!=0,2,4," - J’=1,3,5,-
k2 \?2 k2T
xesp| etz ) /()]
AM M
X|An, |2 (33)

and for orthohydrogen,

o). 5a) =alom)
dQde) o 3k\t*T/) & n\aMe/

X[e2 ¥ +@ae2+2e® X ]

J'=0,2,4,++ J'=1,3,5,++

k2 \? «*T
exp|~(ettomrbn— ) / Gl

X (') [ An, a4+ | Ay ) -

(34)

At room temperature one might ask if the inclusion
of spin correlations is important. The answer seems to
be affirmative, since, as an investigation of P readily
shows, at this temperature only the rotational states
J=0, 1, 2, 3 are present in any appreciable amount.
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Fic. 1. Calculated total cross sec-
tions for parahydrogen and ortho-
hydrogen gas at 7'=20.4° K compared
to the experimental results of Squires
and Stewart (Ref. 10).

F16. 2. The double differential cross
section d%/dFEdQ, for an initial neu-
tron energy of 1 eV and a scattering
angle of 32° for both parahydrogen
and orthohydrogen at 7'=20.4°K.

The cross section for scattering from an ortho-para

d% s ]Vortho d% s

= £
dQde Npara+Northo dQde para I Npara+Northo dQde ortho ’

where Nyara and Noreno are the number densities of para
and ortho molecules, respectively. For £7>>0.015,
Npare/ Northo=1%, and at room temperature (0.0258 V),

While all the above results have been essentially
exact for gaseous hydrogen, it would be desirable to
apply them to the case of liquid hydrogen. The Debye
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Fi1c. 3. The double differential cross section d%/dEdQ, for an
initial neutron energy of 1 eV and a scattering angle of 55° for
both parahydrogen and orthohydrogen at 7'=20.4°K.

temperature of liquid hydrogen has been calculated®
to be 0.007 eV, and thus for neutron energies higher

8 J. Schwinger and E. Teller, Phys. Rev. 51, 775 (1937); 52,
286°(1937).
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than this the results of this paper should be applicable.
An additional supporting fact is that even the lowest
rotational level has an energy twice that of the Debye
temperature.

IV. INTERFERENCE EFFECTS

So far our calculations have been for the “self”
scattering, i.e., referring to a single Hs molecule; and
for gaseous hydrogen the influence of the interference
of neutron waves scattered from different molecules
will be very small. For liquid hydrogen, however,
interference effects might be of importance for very low
neutron energies where para — para transitions in Eq.
(33) are the only competition, i.e., for neutron energies
below 0.015 eV. Even for these low energies, the self-
scattering para — para cross section will dominate.
Interference effects for liquid hydrogen in terms of the
translational correlation function for neutron energies
below the first vibrational level were calculated by
Sarma,* but for completeness we quote the formula
here with the inclusion of the vibrations

dzd'im; 002 k ®
dQde B 2w ko J —o
Xg_ (Wie| exp[ —dx-1;(0) ] exp[ine-ri()) ]| ¥ie)r

J

1 Kap 2
[f du cos(——)e““2"2/8M°’:| . (35)
1 2

dte+iet

For a free gas, the translational correlation function

é'@u | exp[ —dx-1;(0) ] exp[+iw-1:(0) 1[¥i)r

vanishes.
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E 22 eV
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Fic. 4. The double differential cross section d?%/dEdQ, for an
initial neutron energy of 0.22 eV and a scattering angle of 32° for
both parahydrogen and orthohydrogen at 7'=20.4°K.
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Eo = .22 eV
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F16. 5. The double differential cross section d%/dEdQ, for an
initial neutron energy of 0.22 eV and a scattering angle of 55° for
both parahydrogen and orthohydrogen at 7'=20.4°K.

If, for neutron energies $0.015 eV so that the first
rotational transition cannot be made, the results of the
previous section are added to Eq. (35), we obtain for
parahydrogen

e 20l k ka\ *
= —].02(——)/ die’et
dQde T ko 27J)_»

XZZ (Y| exp[—ix-1;(0) ] exp[in-r:(t) ] |¢s)r, (36)

where 0 =0+ 0int.- Equation (36) has precisely the form
for a purely coherent scatterer,? and thus measurements
of the double differential scattering cross section will give
directly the double Fourier transform of the total
translational correlation function and hence information
concerning the intermolecular correlations in liquid
parahydrogen. It is also interesting to note that for
neutron energies 2>0.015 eV, parahydrogen becomes
an incoherent scatterer (since a.2/e¢2<1), and inter-
ference effects become negligible. Liquid hydrogen is
99.799, parahydrogen for equilibrium conditions at the
boiling temperature (20.4°K).

V. NUMERICAL RESULTS AND DISCUSSION

Equations (29) and (30) have been programmed for
computation on the IBM-7044. In particular, Fig. 1
shows the total cross section (per atom) for scattering
from both orthohydrogen and parahydrogen gas at
20.4°K for initial neutron energies up to 1 eV. Notice
that the parahydrogen cross section rises rapidly as Eq
approaches 0.022 €V, which is just the energy the
neutron needs in the laboratory frame to cause the
rotational transition J=0— J=1, from parahydrogen
to orthohydrogen. Also shown in Fig. 1 are some experi-
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mental points by G. Squires and A. Stewart.’? In Figs.
2-5 we show the computed double differential cross
section d%/dEdQ for two different initial energies and
scattering angles. For Ey=1.0 eV and 6=32° one can
clearly recognize the structure due to the rotational
transitions superimposed on the zero- and one-phonon
contributions to the cross section. The structure is more
pronounced for parahydrogen than for orthohydrogen,
since in the case of parahydrogen only the odd rotational
levels make a significant contribution, whereas all levels
contribute to the ortho cross section. The odd levels in
orthohydrogen contribute roughly twice as much as
the even levels as seen in Eq. (30). At a scattering
angle of 55° the structure due to the rotational tran-
sitions is still present, but appears somewhat smoothed
out because of the larger recoil energy. The same com-
ments apply to the curves corresponding to E,=0.22,
although here only the zero-phonon term can contribute
to the cross sections.

In summary then, the results given in this paper
predict the scattering cross sections from H, and D,
for incident neutron energies up to roughly 3 eV and
all practical temperatures. For neutron energies above
a few volts the calculated total cross sections for both
orthohydrogen and parahydrogen tend to the free-atom
limit as they should; and for low-neutron energies, so
that only the first rotational transition occurs, the
results are identical to those of Sarma.* The calculated
total cross section agrees reasonably well with the
available experimental data, and as the experimental
errors decrease with increasing neutron energy so does
the agreement between theory and experiment improve.
In Sec. IV a brief discussion of interference effects was
given and the point made that for neutron energies low
enough so that the rotational transitions cannot be
excited, a measurement of the double differential cross
section in liquid parahydrogen is directly proportional
to the Fourier transform of the total Van Hove corre-
lation function, and hence will give useful information
concerning the intermolecular correlations. Also the
smallness of the Debye temperature (0.007 eV) indi-
cates that the results of this paper will be applicable to
liquid hydrogen for all but very low incident neutron
energies. Interference effects will always be negligible
for neutron energies above 0.015 eV in parahydrogen.

Since the differential cross sections are far more
sensitive to the details of the model than the total
cross section, it is hoped that differential experiments
planned and in progress' for various ranges of neutron
energy will allow a rigorous test of the theory.
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APPENDIX A: D; MOLECULE

Aside from the trivial difference in masses, the only
difference between the H, and the D, molecule lies in
the spin correlation. In this appendix we calculate the
cross sections for the scattering of neutrons from D, by
evaluating the effect of the spin correlations, and using
the H, results already obtained for the vibrations,
rotations, and translations.

For D, we find (with the same notation as in Sec.II)

A=ay exp(iv-R/2)+ay exp(—ix-R/2)

=P cos(x-R/2)+1i0Q sin(x-R/2), (A1)

where
P= (zacoh'{"\/?dincs'o') ) (AZ)
Q=\/2-dinco" (11—12) ’ (A3)

and S=I;+1, is the total spin of the molecule. Since
the deuteron has spin 1, the symmetric (“ortho”)
nuclear spin eigenfunctions of the D, molecule are those
of spin 0 and 2, and these correspond to even values of
J. The antisymmetric (“para’) states have spin 1 and
odd J values. It can readily be shown that the total
spin operator S has nonzero matrix elements only
between states of the same total S[S?=.5(S+1)] and
that the operator Q has nonzero matrix elements only
between states of total S differing by 1. It follows from
this, and also from the conservation of spin angular
momentum (AS=21, 0), that the transitions S=0+«>
S'=2 cannot occur.

Using Eqgs. (11), (12), (14), (A1), we find in this case

g (t) 8=8"= %[Sacohz_*_s(s_{" l)ainczj

Z; ;_7—— Z' expli(Ey—E )] Z ginwt

X ¥ [T/, n|cos(xR/2)|TT,, n=0)|2,
T

where >’ 7 implies that J’ and J have the same parity,
and for J', J both even, S is 0 or 2, while for J/, J both
odd S is 1.

Similarly, Eqs. (17), (19), and (A3) result in

g(B) sesr=(amo/2)[8—S(S+1)]

Z _ Z” expli(Ey—EJ)t] Z ginot
7 2J+1

X 2 |JT

n|sin(x-R/2)|JJ., n=0)|2,
Tl ,
where X"’ ;- implies that J’ and J have opposite parity,
and for J even, S is 0 or 2, while for J odd, Sis 1.
The above results now give, in complete analogy
with the way Eqgs. (29) and (30) were obtained, the
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“self” cross section for orthodeuterium:
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dQde
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For paradeuterium, we find

% s kE [ Ma\"? 17 & \*»
“oer) Falanm) 55
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dQde
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<erenen| (e ) /()

J'+J

X X

l=|J'—J|

C*(JJ'1;00) | Am|?, (AS)

where M4 is the deuteron mass. The energy levels for
D, are given by

Ey=12J (J+1)/4M 4a2=0.0071[J (J+1)/2] eV,
and thus for low temperatures (£0.02 eV) spin corre-
lations will be important for deuterium.

APPENDIX B

Here the values of the Clebsch-Gordon coefficients
C2(JJ'1;00) are given for J=0, 1,2, 3, 4. The analytic
expression for C(JJ'l;00) is given in Ref. 7. For
simplicity in notation, we define the quantity (JJ'|l)
so that

| D= (2I'+1)C2(JT'T; 0).

The results are:
J=0
OJ'|5)=2J"+1,
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J=1

AT | T 41)=J"+1,
ar|r—1=ry,

J=2

3(J'+2)(J'+1)
QI J+2)=

2 2743
J'(J+1) (2T +1)
@r+3)(27—1)
3T —1)

@I | =2) == —,
2 27—1

@r'|J)=

J=3

5('+3)(J'+2)(J'+1)
G| J'43)=-
2 (2J'45)(2J'+3)

3 (J'+2)(J'+1)T
@I T+ =—
2 (2J'+5) (27 —1)

3 (DT (I —1)
[CY AN | e —
2 (27'+3)(2J'—3)

57(J'—1)(J'—2)
@I =3)=—— T
2 (27 —1)(2J'—3)

J=4

35 (43T +2)(J'+1)
@J | J+4)=—
8 (I+T7) 2T +5)(2T+3)

5 (J+3)J+2)J 1T
4| J'+2)=- ;
2 QI +7)(27'+3) (2T —1)
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